	SIERRA COLLEGE OBSERVATIONAL ASTRONOM	(
NUMBER	III.H. TITLE: Comets	
DATE-	PRINT NAME/S AND INITIAL BELOW:	GROUP
DAY-		
LOCATION	l	

OBJECTIVE:

To study the aspects of different comets which were visible from Earth. Use TheSKY to examine aspects of comet orbital elements.

PROCEDURE:

Step 1

Use TheSky program and the images of the comets to determine the following information about each comet in Table 1.

Comet	Date	<i>RA</i> h m	Dec. deg	Magnitude	Distance to Earth (D)	Constellation
Halley	4/2/86					
Hyakutake	3/23/96					
Hale- Bopp	3/29/97					

Step 2

Estimate the angular length of the comet and tail (θ) in degrees and use the distance to the comet (D) found in Table 1 in the formula below to **determine the size of the comet** (S) in AU's.

Note that the images are 10 degrees high and 15 degrees wide.

$$S = \frac{\theta}{57.3^{\circ}} \times D$$

Comet	Image Scale	Measured length of tail	Angular Length (θ)	Size (S) in AUs
Halley				
Hyakutake				
Hale-Bopp				

Step 3

Open the comet Orbital Element dialogue box and record the orbital elements and RA/Dec for Halley's comet. Adjust each parameter (increase the value slightly and decrease it slightly) and recompute the comet position. Determine how each parameter affects the comet's orbit (what is the change in RA and Dec). List your results below:

$$\begin{array}{c} e= & L= \\ q= & w= \\ i= \end{array}$$

Parameter	Increase value		Decrease value		
е	RA=	Dec=	RA=	Dec=	
q	RA=	Dec=	RA=	Dec=	
i	RA=	Dec=	RA=	Dec=	
L	RA=	Dec=	RA=	Dec=	
W	RA=	Dec=	RA=	Dec=	

Step 4

Determine the size of the comet Shoemaker-Levy 9, the comet that broke apart! Use the 5 images and complete the table below. Use the size formula (S) found in Step 2.

All images are 2 arc minutes wide (i.e. 1/30th of a degree wide).

Determine Image Scale = _____

Date	Distance from Earth (D)	Measured length of chain of comets	Estimated angular length (θ)	Size (S)
3/27/93	4.5 AU			
4/15/93	4.6 AU			
5/21/93	4.9 AU			
6/12/93	5.2 AU			
7/17/93	5.3 AU			

Step 5

Determine the size of the LARGEST impact site for the "great crash" from the images provided (Show Work!).

Determine Image Scale = _____

Note: Jupiter's diameter is 142,800 km and the Earth's diameter is 12,756 km.

Impact Site Size = -----

Questions:

List and describe the major parts of a comet.

What are the types of orbital periods of comets?

Would you say comets are large or small celestial objects? Why?

How does the size of the SL-9 impact on Jupiter compare to the Earth?

What would have happened if SL-9 hit Earth?

Write Conclusions in Bluebook.